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Abstract

This paper describes an active (real time)
recognition strategy whereby information is
inferred iteratively across  several viewpoints in
descent imagery.  We will show how we use
inverse theory within the context of parametric
model generation, namely height and spectral
reflection functions, to generate s model
assertions.  Using this strategy in an active
context implies that, from every viewpoint, the
proposed system must refine its hypotheses
taking into account the image and the effect of
uncertainties as well. The proposed system
employs probabilistic solutions to the problem of
iteratively merging information (images) from
several viewpoints. This involves feeding the
posterior distribution from all previous images as
a prior for the next view. Novel approaches will
be developed to accelerate the inversion search
using novel statistic implementations and
reducing the model complexity using foveated
vision.

Foveated vision refers to imagery where the
resolution varies across the image. In this paper,
we allow the model to be foveated where the
highest resolution region is called the foveation
region. Typically, the images will have dynamic
control of the location of the foveation region.
For descent imagery in the Entry, Descent and
Landing (EDL) process, it is possible to have
more than one foveation region.

This research initiative is directed towards
descent imagery in connection with NASA’s
Entry Descent Landing (EDL) applications. 3-D
Model Recognition, Generation, Fusion, Update
and Refinement (RGFUR or RG4) for height and
the spectral reflection characteristics are in focus

for various reasons, one of which is the prospect
that their interpretation will provide for real time
active vision for automated EDL.

1  Introduction and Background

The period of the Entry, Descent and Landing is
the missions most critical period with the highest
risk factor for a potential Loss of Vehicle (LOV).
Since distant missions such as Mars are
constrained in payload and design, NASA must
employ technology to intelligently use all
available resources, optimally integrate sensor
data and perform real-time decision and reason
for successful Entry, Descent and Landing.

Understanding the importance of Entry Descent
and Landing is best illustrated by describing the
critical phases of an Entry, Descent and Landing
process for a spacecraft. It is estimated that the
spacecraft’s descent from the time it hits the
upper atmosphere until it lands takes no more
than 4 minutes and a few seconds to accomplish
the final landing as in the case of the Mars Polar
Lander. Enabling technologies such as active
vision can continually operate and integrate the
vision system to actively interpret images for
enhanced model recognition which can play a
crucial role in mitigating major risk factors.

We estimate that the period where on-board
intelligent systems can start capturing the
landing site s topographic details starts about
two minutes before landing and the spacecraft is
expected to be moving at about 1,000 miles per
hour around 5 miles above the surface.  About 70
to 100 seconds before landing a landing radar
will be activated. To this end, we anticipate to
having our proposed 3-D Model Recognition,
Generation, Fusion, Update and Refinement
(RGFUR or RG4) to include radar readings and



other sensor modalities (gyros and inertia
guidance). The radar will be able to gauge the
spacecraft’s altitude about 40 seconds after it is
turned on, at an altitude of about 1.5 miles above
the surface. With a robust RG4 system, the

spacecraft can rely on the on-board camera for
final touch down.

2  Similar Work and Comparison

Johnson s work described in [10] addresses the
problem of autonomous operation close to a
small body.  The work described in our paper
differs from, and is an advance over, the work in
[10] in a number of ways.  In this paper we argue
for a unified model of the surface of interest,
with all observations aimed at building up
knowledge of this model, in contrast to an
approach that builds up a model piecewise and in
a manner dependent on the detection of features
in the images.  We also propose doing absolute
location relative to the entire surface model, an
approach that is much more robust and accurate
than location relative to a small number of
landmarks.  It also does not rely on the presence
of explicit landmarks on the object, but instead
uses the entire surface essentially as one,
extended landmark.  Finally, the approach we
advocate gives explicit uncertainty estimates of
the surface and position; the work in [10]

provides uncertainty estimates by running Monte
Carlo simulations.  After all,  a typical risk
associated with the landing process is to be able
to resolve the surface to the level of details and
be capable of avoiding a boulder, a ditch or a
crack  which could result in a Loss of Vehicle
(LOV).

3  Research Objectives

The ambition of this paper in active vision is to
continually operate and integrate a vision system
that can actively interpret images for enhanced
model recognition. The proposed approach
exploits super-resolution techniques [3][4] and
focus of attention (foveated vision) to enable
better model recognition in descent imagery.

This research initiative is directed towards
descent imagery in connection with NASA’s
Entry Descent Landing (EDL) applications. 3-D
Model Recognition, Generation, Fusion, Update
and Refinement (RGFUR or RG4) for height and
the spectral reflection characteristics are in focus
for various reasons, one of which is the prospect



that their interpretation will provide for real time
active vision for automated EDL.

4  Model  Recognition, Generation,
Fusion, Update and Refinement (RG4)
and Super-Resolution

We are investigating a Bayesian model-based
approach to integrating information from
multiple images of the same area into a unified
model at a resolution higher than that of the
contributing images (super-resolution).  This
model is a representation of the physical
parameters describing the surface.  The physical
parameters we use are heights at each grid point
and the surface reflectance properties at each
grid point, such as albedo (for a Lambertian
reflectance model) or more generally a
parameterized bi-directional reflectance
distribution function (BRDF).  Each image is an
independent sample of the area of interest, and
by combining the information from these
separate images, surface features smaller than the
image pixel scale can be captured. Because the
model is constructed at finer resolution than any
image, it is possible to use it to accurately project
what that surface would look like from any view
point, under any lighting conditions.  This
projection is computed by summing the
contribution from each surface patch onto each
synthesized image pixel, weighted by the camera
point spread function (PSF).  This projection
process is called rendering in computer graphics,
and the realism achieved by current computer
graphics indicates the viability of accurate image
projection from a surface model.

The essence of super-resolution in RG4 is to use
Bayesian inference to invert the image rendering
process.  That is, in rendering, the surface and its
reflectance properties are assumed known, as is
the location and properties of the camera and the
lighting source (typically the sun), and this
information is used to generate an image under
those conditions.  In the Bayesian model-based
inference process, the rendering process is
reversed.  That is, given the images, we find the
most likely surface that would have generated
them.

The model would consist of a discretized grid
covering the area of interest, where each grid
point stores the geophysical parameters of the
corresponding ground location.  These

parameters mainly include elevation and
reflectance spectral characteristics.  This model
is chosen so that what the camera is expected to
see can be projected from the model.  Model
update consists of comparing the expected pixel
values with the observed, and changing the
model to better fit the data (including previous
data).  This update will be accomplished by
computationally efficient Bayesian inference that
inverts the image rendering process as used in
computer graphics. The search for the most
likely surface will be performed by a novel type
of gradient descent, where the gradient is
computed analytically.

Figure 1: Top image is one of the two images
taken from Clementine imagery to super-resolve
the image on the bottom. With two images only
(similar to the one on the left), the bottom image
contains more detailed features (The bottom
image is rendered from a model - not shown-).

NASA has developed this process of model-
based inversion over the last few years, starting
from the simple 2-D models, and working up to
the full 3-D surface reconstruction problem
[3][4].  We are now able to super-resolve the
heights and albedos of the true surface from



multiple images, where the images can be taken
from any viewpoint and under any lighting
conditions.  On artificial images generated from
the model, we are able to reconstruct the surface
to essentially the noise level of the data.

Figure 2: Top image is one of the twelve
synthetic images of  Silicon Valley area  used to
super-resolve the second image. With twelve
images only, the right image contains  crisp
detailed features. The bottom plot is the surface
inferred from the images (not shown is the

albedo field).

4.1  Research

Super-resolution is a very useful product for the
Entry, Descent, and Landing process where the
resolved model is beyond what can be extracted
using the best available image. The main reason
for developing the super-resolution capability is
to allow the integration of information from
different images without the problem of aliasing
and mismatched pixel grids. Super-resolution
solves this problem because any pixel maps onto
many ground points, so that intensity of any
pixel can be accurately computed by summing
up the corresponding ground points. In fact, the
surface model becomes the repository of the
pixel’s information, so that a system does not
need to have multiple images persistent in its
memory, but rather a model.  EDL processes and
post processes will thus interact with the surface
model, and can view it from any direction or
under any lighting conditions, including
viewpoints that were not originally available!

In implementing this research, we extend 3-D
super-resolution algorithms to solve a number of
technical problems that arise in this application.
In particular we will find workable solutions to
the following problems using the approach
outlined below.

Shape from Motion

A main objective of RG4 is to achieve a surface
inference in  real time’’. To that extend we
obtain a fast shape from motion alogrithm which
can feed itself as prior knowledge. Standard
shape from motion’’ algorithms [1] maintain the

assumption of constant surface reflectance
properties and are not extendable in nature to
super-resolution. We plan to use our new shape-
from-motion technique to bootstrap’’  a super-
resolution  inference for natural surface
formation where varying albedo properties and
shadows are correctly accounted for.

 Multi-Spectral Integration

EDL on-board instruments have multiple
spectral bands will have different coverages, i..e.
different widths and ranges.  Our approach to
solving the problem posed by integrating this
heterogeneous information is to consider the



model’s surface by a wavelength dependent
reflectance.  That is, instead of a single number
to represent the (Lambertian) surface reflectance
for a particular band, we will represent the
reflectance as a "smooth" function of
wavelength, where the function is represented by
a small number of coefficients that are estimated
from the data.  This function can then be
integrated with each band spectral response
function (a property of the instrument) to get the
expected reflectance for that band.

Super-Resolution

One of the major achievements in this research is
the method to achieve a recursive linear
minimization as part of the desired inference for
three-dimensional surface reconstruction to the
extent that the resolution of inferred surface
mesh is higher than the spatial resolution of input
images. This technique also allows images to be
super-resolved in both two or three dimensions
(according to the nature of the data).

Accelerated Search

In statistical inference scheme, the solution for
the gradient step in linear minimization for large
sparse linear systems for which direct methods
such as Conjugate Gradient is expensive in terms
of both time and storage cost. For the class of
descent imagery problem of using Bayesian
inference for 3-D model parameter estimation,
we plan to use a novel iterative technique which
solves the problem of search minimization
efficiently in terms of storage and memory cost.
This novel technique takes root in a recent
discovery for a model prior which reduces the
covariance matrix complexity from a quadratic
to a linear representation. As a result, the amount
data will be relatively linear to the size of the
model which is essential especially in a scarce
computing environment.

Foveated Vision

We also support a Foveated Vision capability
with variable resolution--that is, the surface
triangles may be very small in some areas
(super-resolved) and very coarse in other areas
(under-resolved). The primary value of foveated
vision is in the  model reconstruction where
high resolution information is transmitted in the
regions of the image that are selected as
important. On the other hand, low resolution
information is  processed at a second stage under

contraints (e.g. time and computing resources).
Foveated vision is crutial in descent imagery and
will enable control in the resolution of
pixel/model relationships.

Figure 3: Left image is our planned spider-web
type mesh with a foveated center (not necessary
centered in the middle). Right  image is a typical
non-uniform grids.

We extend 3-D surface models to foveated
models using traditional triangulated surface, but
distribution of the heights would no longer be
tied to a uniform grid but to Foveated model
(Figure 3.a).  This extension is not difficult in
principle, but the changed representation affects
triangle indexing, and so affects efficiency.

4.2  Active Recognition: Concepts and
Technical Aspects

The key idea behind active recognition in a
sequential recognition strategy is that of
improving interpretation by accumulating
evidence in real time. The important aspect in the
Entry Descent and Landing recognition problem
is to compute on-line a 3D model from sensory
data linked to the different sensor hardware
which support the different phases in descent
process (e.g. different cameras, FOV, RADAR,
LADAR, altimeters, gyros etc.).

It is clearly understood that the image resolution
in the early stage does not guarantee enough
information either for quantitative or for
qualitative model recognition. But acquiring
uncertainties serves to condition prior
expectations about the model and establishes a
quantitative representation.

Practically, a meaningful qualitative recognition
for a 3D-model reconstruction can be achieved



after only a few sequences of images have been
collected. To achieve a quantitative recognition
the 3D model recognition is optimally obtained
by computing the probability of the 3D model
given the image sequences or

p h I In( , | ... )ρ 1

Where hi  and ρi  are the parameters of a height

field and an albedo field.

At different stages along the descent process,
image sequences with small frame-to-frame
camera motion can be treated actively to provide
an early 3D model. This real time behavior
leverages from small motions, which minimizes
the correspondence problem between successive
images and the knowledge of the camera
trajectory. However, this sacrifices depth
resolution of the small baseline between
consecutive image pairs [9]. Solution to this
problem is trivially sought through a
probabilistic incremental integration (e.g.
Kalman Filter). In this particular active
recognition, we will employ a matching and
extraction technique which takes advantage of
the lateral motion of the camera and transforms
the search problem to a one-dimensional search
problem (search is limited to foveated region).

Shape from shading-derived techniques provides
gradient vector fields of the surface

∇ h r( )  and can be readily obtained in real-
time  from a single image source under very
simplifying assumptions. Our approach is to
reconstruct the height field h r( ) without the
knowledge of the boundary conditions, which
are directly obtained by the other sensor
modalities and; in particular, the radar readings
at a later stage. With single radar readings (initial
condition), the height field h r( ) is readily
reconstructed.

5  Recursive Super-resolution

Our current and existing super-resolution system
can address many problems: the images may be
of differing resolutions (e.g. multiple concurent
cameras); the surface albedo is not assumed
constant; the density of the model is user and

data driven.

The model that we are trying to infer is defined
to be the topology and reflectance properties of
the surface being observed.  For simplicity we
define the surface over a grid of points, and
currently define a height value, hi  and an albedo

value, ρi  at each grid point.  Bayes  theorem

then states that to infer values for the heights and
albedos from the image data, we use the
expression

p h I I p I I h p hn n( , | ... ) ( ... | , ) ( , ),ρ ρ ρ1 1=

which states that the posterior distribution of the
heights and albedos is proportional to the
likelihood — the probability of observing the
image data, I , given the current values of the
heights and albedos — multiplied by the prior
distribution over the model.

To  the extent of super-resolution, we make the
assumption that the likelihood is due to zero
mean Gaussian errors between the observed
images, I , and the images synthesized from the

model, ˆ( , )I h ρ , resulting in the likelihood being

where the product is taken over all pixels in all
the images in the data set. The prior used is
based on penalizing the curvature of the surface.
It is a penalty encouraging a continuity in the
inferred surface.

Because the likelihood is a function of the
images synthesized from the model, it is clearly a
non-linear function of the heights and albedos,
and this makes optimizing the posterior
distribution difficult.  However, we have found
that an optimal solution to the nonlinear function
can be obtained by a novel Conjugate Gradient
(CG) search.

We expand ˆ( , )I h ρ  about the current estimate,

h0 0,ρ , and replace it by
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The minimization of the log-posterior then
becomes the minimization of a quadratic form,
and can be performed using the conjugate
gradient method.  This minimization finds the
minimum of the local linear approximation. At

the minimum, we recompute ˆ( , )I h ρ  and D
and minimize the log-posterior iteratively.

5.1  The RG4 system: embedding
stronger prior

For an Entry and Descent real-time process,
strong prior about the surface model is highly
desirable and therefore we plan to extend the
super-resolution technique to include the shading

information ∇ hs . Bayes  theorem then states

that to infer values for the heights and albedos
from the image data as well from the slopes, we
use the expression

p h I I p I I h p h p h h p h hn n s s( , | ... ) ( ... | , ) ( , ) ( ) ( )ρ ρ ρ1 1= ∇ − ∇ −
.

Here, it shall be remarked that hS  and ∇ hs  are

independent prior information obtained
separately (i.e. shape from motion and image to
surface gradient mappings). Furthermore, hS

will be obtained directly from a fast shape from
motion method. Using the form of the prior in
the previous equation makes it feasible to
account for uncertainties in the independent
measurements of hS  and ∇ hs .  In addition, we

plan to use the prior hS  to integrate the radar and

other altimeter readings whenever they become
available.  We therefore bootstrap’  the
inference of the actual height field and albedos.
Potentially, this leaves us with the advantage of
rewriting the Bayesian inference process on the
deviation (fluctuation) between the prior and
height field rather than the height field itself,
thus the parameters will be

δh h hS= − ,

and are believed to be small, such that a fast
convergence of the inference process can be
guaranteed.

6  Final Remarks

An operational software system based on this
proposed demonstration system would use
images to update the surface model as soon as
they are received.  The Bayesian approach gives
a solution to the problem of how much the prior
model should be believed when the new data
disagrees with the prior model.  Not only does
this allow model update when there is conflicting
information, but it can also serve as a change
detection warning system.  This is possible
because the model projects expected values.  If
measurements are many standard deviations
from expectations, then it is a signal for likely
change.

Another planned operation of the RG4 system is
to use the constructed model as a topographical
map after the landing phase. The super-resolved
model can be employed to focus the desired
exploration phase of the mission. Models
constructed from altitudes will provide a much
wider scope in the landing site topography.
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